作者:鲍杨婉莹,蒋瑜,李冬
摘要:聚类算法在图像处理、模式识别等领域有广泛应用,粗糙模糊C-means算法是近年来研究较多的聚类算法。在面对聚类结构不同的样本时,传统的粗糙模糊C-means算法存在聚类簇心偏向性和隶属度选取的问题,使聚类结果不理想。提出一种基于②型模糊集的粗糙模糊C-means算法,算法采用②型模糊集理论,计算样本的次隶属度,从而描述样本的深层信息,根据样本最大隶属度和次大隶属度之间的差别,将样本划分到类簇的上下近似集中,根据上下近似集的权重,迭代并重新计算簇心,直到达到设定阈值或者满足算法终止条件。将改进的粗糙模糊C-means算法在人工数据集和UCI数据集上进行实验对比,结果表明改进的粗糙模糊C-means算法具有良好的性能。
发文机构:成都信息工程大学软件工程学院
关键词:聚类粗糙集2型模糊集粗糙模糊C-meansclusteringrough settype-2 fuzzy setrough fuzzy C-means
分类号: TP301.6[自动化与计算机技术—计算机系统结构]