地学前缘:英文版 · 2021年第1期351-364,共14页

Landslide identification using machine learning

作者:Haojie Wang,Limin Zhang,Kesheng Yin,Hongyu Luo,Jinhui Li

摘要:Landslide identification is critical for risk assessment and mitigation.This paper proposes a novel machinelearning and deep-learning method to identify natural-terrain landslides using integrated geodatabases.First,landslide-related data are compiled,including topographic data,geological data and rainfall-related data.Then,three integrated geodatabases are established;namely,Recent Landslide Database(Rec LD),Relict Landslide Database(Rel LD)and Joint Landslide Database(JLD).After that,five machine learning and deep learning algorithms,including logistic regression(LR),support vector machine(SVM),random forest(RF),boosting methods and convolutional neural network(CNN),are utilized and evaluated on each database.A case study in Lantau,Hong Kong,is conducted to demonstrate the application of the proposed method.From the results of the case study,CNN achieves an identification accuracy of 92.5%on Rec LD,and outperforms other algorithms due to its strengths in feature extraction and multi dimensional data processing.Boosting methods come second in terms of accuracy,followed by RF,LR and SVM.By using machine learning and deep learning techniques,the proposed landslide identification method shows outstanding robustness and great potential in tackling the landslide identification problem.

发文机构:Department of Civil and Environmental Engineering Department of Civil and Environmental Engineering

关键词:LandslideriskLandslideidentificationMachinelearningDeeplearningBigdataConvolutionalneuralnetworks

分类号: P64[天文地球—地质矿产勘探]

注:学术社仅提供期刊论文索引,查看正文请前往相应的收录平台查阅
相关文章