地学前缘:英文版 · 2021年第1期375-383,共9页

Application of soft computing techniques for shallow foundation reliability in geotechnical engineering

作者:Rahul Ray,Deepak Kumar,Pijush Samui,Lal Bahadur Roy,A.T.C.Goh,Wengang Zhang

摘要:This research focuses on the application of three soft computing techniques including Minimax Probability Machine Regression(MPMR),Particle Swarm Optimization based Artificial Neural Network(ANN-PSO)and Particle Swarm Optimization based Adaptive Network Fuzzy Inference System(ANFIS-PSO)to study the shallow foundation reliability based on settlement criteria.Soil is a heterogeneous medium and the involvement of its attributes for geotechnical behaviour in soil-foundation system makes the prediction of settlement of shallow a complex engineering problem.This study explores the feasibility of soft computing techniques against the deterministic approach.The settlement of shallow foundation depends on the parametersγ(unit weight),e0(void ratio)and CC(compression index).These soil parameters are taken as input variables while the settlement of shallow foundation as output.To assess the performance of models,different performance indices i.e.RMSE,VAF,R^2,Bias Factor,MAPE,LMI,U(95),RSR,NS,RPD,etc.were used.From the analysis of results,it was found that MPMR model outperformed PSO-ANFIS and PSO-ANN.Therefore,MPMR can be used as a reliable soft computing technique for non-linear problems for settlement of shallow foundations on soils.

发文机构:Department of Civil Engineering School of Civil and Environmental Engineering School of Civil Engineering

关键词:ReliabilityanalysisMPMRANN-PSOANFIS-PSOAnderson-DarlingtestMann-Whitneytest

分类号: TP3[自动化与计算机技术—计算机科学与技术]

注:学术社仅提供期刊论文索引,查看正文请前往相应的收录平台查阅
相关文章