古地理学报:英文版 · 2019年第2期170-180,共11页

Sedimentology of reefal buildups of the Xiannüdong Formation(Cambrian Series 2),SW China

作者:Hao Tang,Stephen Kershaw,Xiu-Cheng Tan,Hong Liu,Fei Li,Cheng Shen,Fei-Fan Lu,Xue-Fei Yang

摘要:The reefs in the Xiannüdong Formation (Cambrian Series 2) are the oldest archaeocyathan–microbial bioconstructions in China, but the details of their microbial structures have not been previously described. However, a new section at Tangjiahe site, northern Sichuan Province, contains very well-preserved microbial fabrics that provide these details, and is described in this study. The Tangjiahe section contains three levels of reefal buildups that were constructed by a consortium of archaeocyaths and calcimicrobes in varying proportions. The lowest (oldest) reefal buildup is a calcimicrobial biostrome, possibly in the form of a wide mound with a low relief (unconfirmed due to outcrop limitation), which was formed by Epiphyton with rare small archaeocyaths, and is sandwiched by flat-pebble conglomerates. The middle reefal buildup is a high-relief calcimicrobial mound, enclosed by oolites, that was built by intergrown Renalcis and Tarthinia. Archaeocyath fossils are uncommon, and were bound into the framework by microbial carbonates. The uppermost (youngest) reefal buildup is a low-relief archaeocyathan mound lacking calcimicrobes but partly having microbially-clotted textures attached on archaeocyaths. Calcimicrobes built or aided archaeocyaths to form the framework of Tangjiahe reefs. The three buildups formed in low-energy lagoons behind ooid shoals, and the environment was nutrient-rich due to terrigenous influx from adjacent lands. Tangjiahe reefs thus resemble most Early Cambrian reefs, in settings consistent with eutrophic, calm environments, and are characterized by the domination or aid of calcimicrobial components in framework construction.

发文机构:Division of Key Laboratory of Carbonate Reservoir of CNPC Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Mineral Department of Life Sciences

关键词:MICROBIALITESArchaeocyathsREEFSCAMBRIANSERIES2SouthwestChina

分类号: P[天文地球]

注:学术社仅提供期刊论文索引,查看正文请前往相应的收录平台查阅
相关文章