海洋学研究 · 2018年第4期60-67,共8页

基于不同环境因子的中西太平洋鲣鱼资源丰度灰色预测模型构建

作者:方舟,陈洋洋,陈新军,郭立新

摘要:鲣Katsuwonus pelamis广泛分布于各大洋热带和亚热带海域,其中以中西太平洋资源量最为丰富。综合评价环境因子对鲣鱼资源量的影响,构建科学的资源预报模型可为我国可持续合理开发该鱼种提供参考。本研究利用1998—2013年中西太平洋渔获量数据,以单位捕捞努力量渔获量(CPUE)为资源相对丰度指标,利用灰色关联方法分析鲣鱼资源相对丰度与环境因子之间的关联度,选取合适的环境因子,并基于不同环境因子构建不同的灰色预测模型对鲣鱼资源相对丰度进行预测,比较选择最优模型。结果表明,中西太平洋鲣鱼的产量逐年递增,而CPUE在年间有着较大的波动。灰色关联分析认为,海表面温度与CPUE的平均关联度最大,其次为Nino3.4区海表温度距平值,其他的环境因子与CPUE的关联度较小。基于多环境因子的预测模型中,包含所有因子(海表面温度、海表面高度、叶绿素质量浓度a和Nino3.4区海表温度距平值)的模型M1有着最佳的拟合效果,实际值与预测值的相对误差为6.475 2,相关系数为0.687 4;而基于单一环境因子的预测模型中,去除11月SST数据的模型S2有着最佳的拟合效果,实际值与预测值的相对误差为7.419 2,相关系数为0.791 0。相比多环境因子的预测模型,单一环境因子预测模型有着较高的稳定性,实际值与预测值直接相关性也较高,可以作为中西太平洋鲣鱼资源相对丰度预报的最优模型。

发文机构:上海海洋大学海洋科学学院 大洋渔业资源可持续开发教育部重点实验室 国家远洋渔业工程技术研究中心 农业部大洋渔业开发重点实验室

关键词:鲣鱼环境因子灰色系统资源相对丰度预测模型skipjack tunaenvironmental factorgrey systemrelative abundanceforecasting model

分类号: S932.4[农业科学—渔业资源][农业科学—水产科学]

来源期刊
海洋学研究

海洋学研究

Journal of Marine Sciences
  • CSCD
  • 北大核心
注:学术社仅提供期刊论文索引,查看正文请前往相应的收录平台查阅
相关文章