作者:张高章,刘晶晶
摘要:针对误差反向传播算法(BP)神经网络在寻优过程中容易陷入局部最优的缺陷,将遗传算法(GA)与BP神经网络相结合,构建了一种基于遗传算法反向传播(GABP)神经网络模型。建模所用网络训练数据是推进剂配方中的工艺助剂及键合剂含量、固化参数、不同粒度的高氯酸铵含量、不同粒度的铝粉含量、端羟基聚丁二烯(HTPB)的羟值等对应的不同温度下测试的抗拉强度和断裂伸长率共12组数据,对它们进行预测和实测。结果表明,预测值与实验值整体具有较好的吻合性,抗拉强度及断裂伸长率的最小误差分别为0.71%、4.67%,即所建模型具有指导配方性能预示的意义。
发文机构:江西航天经纬化工有限公司
关键词:神经网络推进剂力学性能优化预测neural networkpropellantmechanical performanceoptimizationprediction
分类号: V512[航空宇航科学与技术—航空宇航推进理论与工程]