作者:任萍,陈明轩,曹伟华,王在文,韩雷,宋林烨,杨璐
摘要:初步研发了一套基于机器学习方法XGBoost且考虑地形特征影响的数值预报多模式集成技术,并与传统的等权重平均和线性回归方法的集成效果进行了对比分析。利用北京地区快速更新循环数值预报系统每天8次循环预报给出的近地面2 m温度、2 m相对湿度、10 m风速、10 m风向数据产品,分别基于机器学习方法XGBoost、等权重平均方法、线性回归方法构建了3种体现地形因子影响的多模式预报时间滞后集成模型。试验对比分析了暖季、冷季每日不同时刻的模式预报集成订正效果。结果表明:分季节试验中,基于XGBoost模型对2 m温度、10 m风速的集成预报结果相对原始最优预报结果误差明显优于其他两种传统方法。XGBoost对2 m温度集成的误差可降低11.02%—18.09%,10 m风速集成误差可降低31.23%—33.22%,10 m风向集成误差可降低4.1%—8.23%。2 m相对湿度的集成预报误差与传统方法接近。基于XGBoost的多模式集成预报模型可以充分“挖掘”不同模式或不同时刻快速更新循环预报优点,有效降低模式的系统性误差,提供准确性更高的多模式集成确定性预报产品。
发文机构:中国海洋大学 北京城市气象研究院
关键词:集成数值预报机器学习XGBoost线性回归等权重IntegrationNumerical predictionMachine learningXGBoostLinear regressionEqual weight
分类号: P456[天文地球—大气科学及气象学]