作者:冯业荣,薛纪善,陈德辉,吴凯昕
摘要:设计了适用于四维变分同化系统的扰动预报模式GRAPES_PF。根据GRAPES的地形追随坐标非静力原始方程组,采用小扰动分离方法推导微分形式的线性扰动预报方程组,并利用与GRAPES非线性模式相似的数值求解方案求解线性扰动微分方程组。在设计扰动预报模式时采用了两个时间层半隐式半拉格朗日方案对动量方程、热力学方程、水汽方程和连续方程进行时间差分,空间差分方案的变量分布水平方向采用Arakawa C跳点网格,垂直方向采用Charney/Phillips跳层。利用代数消元法进一步推导得到只包含未来时刻扰动Exner气压的亥姆霍兹方程,进而通过广义共轭余差法(GCR)求解,在此基础上得到未来时刻扰动量的预报值。基于所开发的扰动模式开展了数值试验。首先在非线性模式中施加一个中尺度初始扰动高压,得到初始扰动在非线性模式中的后续演变,然后将相同的初始扰动作为扰动模式的初值进行时间积分,将扰动模式预报的结果与非线性模式的结果做了对比。结果表明,所开发的扰动模式GRAPES_PF较好地模拟了惯性重力内波的传播过程:初始高压扰动激发了一个迅速向外传播的惯性重力内波,在气压场向风场适应的过程中,水平风场、垂直运动、位温和湿度等变量均出现了扰动增量,与非线性模式得到的结果相当接近。GRAPES_PF作为GRAPES非线性模式的合理线性模式为建立基于线性扰动预报的区域四维变分同化系统奠定了科学基础。
发文机构:中国气象局广州热带海洋气象研究所/广东省区域数值天气预报重点实验室 中国气象科学研究院 国家气象中心
关键词:扰动预报模式GRAPES非线性模式四维变分同化半隐式半拉格朗日方案亥姆霍兹方程Perturbation forecast modelGRAPES nonlinear modelFour dimensional variational data assimilation(4D-Var)Semi-implicit semi-Lagrangian schemeHelmholtz equation
分类号: O17[理学—基础数学]