石油地球物理勘探 · 2020年第5期957-964,972,929-930,共11页

基于迭代启发网络算法的非平稳随机噪声压制

作者:张文征,唐杰,刘英昌,孟涛,陈学国

摘要:常规滤波方法常常放大了噪声的影响,同时噪声的存在也限制了分辨率的提升,并"平滑"了地震数据中的不连续信息。为此,提出了基于迭代启发网络(IIN)算法的非平稳随机噪声压制方法,利用迭代启发网络压制非平稳随机噪声,网络结构简单、紧凑。IIN由交替方向乘子算法的迭代过程推导而来,利用L1范数优化变分模型。在训练阶段,通过增加一个新的辅助变量,将目标函数的极值转化为增广拉格朗日格式,使用L-BFGS(Large-Broyden Fletcher Goldforb Shanno)算法判别、训练所有网络参数,最终得到最优去噪模型。理论模型及实际资料的去噪结果表明:(1)由训练得到的去噪模型根据有效信号的特征,在去噪的同时可保留同相轴的形状特征;采用的迭代网络简单、紧凑,加快了网络的收敛速度,能够用相对较小的数据集和较短的训练时间快速训练去噪模型,达到预期的去噪效果。(2)所提方法具有较强的适应性,有效地压制了常规地震数据中的非平稳随机噪声。

发文机构:中国石油大学(华东)地球科学与技术学院 中国石化胜利油田勘探开发研究院

关键词:深度学习迭代启发网络非平稳随机噪声去噪模型deep learningiterative scheme inspired networknon-stationary random noisesdenoising model

分类号: P631[天文地球—地质矿产勘探]

注:学术社仅提供期刊论文索引,查看正文请前往相应的收录平台查阅
相关文章