作者:梅益,薛茂远,唐芳艳,肖展开
摘要:以某电器连接壳体为例,借助Moldflow软件对正交试验方案组合进行模拟,对正交试验模拟结果进行极差分析,得到各工艺参数对塑件翘曲变形量的影响程度为:保压时间>模具温度>注射时间>熔体温度>保压压力。极差分析得到的最优工艺参数组合对应的翘曲变形量与正交试验方案中最小翘曲变形量相比降低了6.7%。关键点采用遗传算法优化后的预测模型(GA-ELM)对塑件翘曲变形量进行预测。由于传统极限学习算法(ELM)的权值和阈值随机产生,网络系统预测稳定性及精度较差,故通过GA全局寻优能力寻找最佳的权值和阈值,得到GA-ELM。选择正交试验前80%样本作为训练集训练ELM与GA-ELM模型,通过样本后20%作为测试集验证ELM与GA-ELM模型预测精度。对比分析可看到:使用GA-ELM预测模型比直接使用ELM预测模型预测结果有更高预测精度及稳定性。此GA-ELM模型可用来预测该塑件翘曲变形量。对同类模具设计优化提供一定的思路及理论参考。
发文机构:贵州大学机械工程学院
关键词:正交试验设计MOLDFLOW极差分析极限学习算法遗传算法优化后的预测模型Orthogonal Experimental DesignMoldflowRange AnalysisExtreme Learning AlgorithmGenetic Algorithm-Extreme Learning Algorithm
分类号: TQ320.662[化学工程—合成树脂塑料工业]