作者:单家辉,封莉,袁汉青,张岩,钟忺,甘为群,黎辉,黄宇
摘要:日冕物质抛射(Coronal Mass Ejection,CME)的检测是建立CME事件库和实现对CME在行星际传播的预报的重要前提.通过Visual Geometry Group(VGG)16卷积神经网络方法对日冕仪图像进行自动分类.基于大角度光谱日冕仪(Large Angle and Spectrometric Coronagraph Experiment,LASCO)C2的白光日冕仪图像,根据是否观测到CME对图像进行标记.将标记分类的数据集用于VGG模型的训练,该模型在测试集分类的准确率达到92.5%.根据检测得到的标签结果,结合时空连续性规则,消除了误判区域,有效分类出CME图像序列.与Coordinated Data Analysis Workshops(CDAW)人工事件库比较,分类出的CME图像序列能够较完整地包含CME事件,且对弱CME结构有较高的检测灵敏度.未来先进天基太阳天文台(Advanced Space-based Solar Observatory,ASO-S)卫星的莱曼阿尔法太阳望远镜将搭载有白光日冕仪(Solar Corona Imager,SCI),使用此分类方法将该仪器产生的日冕图像按有无CME分类.含CME标签的图像将推送给中国的各空间天气预报中心,对CME进行预警.
发文机构:中国科学院紫金山天文台 中国科学院暗物质和空间天文重点实验室 武汉理工大学计算机科学与技术学院 中国科学技术大学天文与空间科学学院 南京大学计算机软件新技术国家重点实验室
关键词:太阳:日冕物质抛射技术:图像处理方法:数据分析Sun:coronal mass ejections(CMEs)techniques:image processingmethods:data analysis
分类号: P182[天文地球—天文学]