油气地球物理 · 2018年第1期59-62,共4页

含流体岩石弹性形变状态下的精确有效应力定理

作者:Amos Nur,王鸿升

摘要:有效应力〈σij〉的精确表达式,特别是导致有孔隙流体材料的弹性应变的应力〈P〉(有效应力)是基于假设之上的,仅对Hook定律有效,即〈σij〉=σij-αPδij和〈P〉=Pc-Pp,这里α=1-(K/Ks),Pc和Pp是围压和孔隙压力,K和Ks分别是干燥岩石(排水状态下)和岩石基质(岩石固体部分)的体积模量。Gccrtsma(1957年)和Skempton(1960年)在实验的基础上首次提出关于〈P〉的方程。该表达式虽然不直接依赖于孔隙度,但是当有效应力〈P〉等于围压时孔隙消失,因此K=Ks。如果使用〈σij〉方程中的有效应力定理,那么可根据没有孔隙压力的固体弹性模量确定一个具有孔隙压力的多孔固体的应变。有效应力表达式非常准确地描述了砂岩和花岗岩样品在围压和孔隙压力达到2.5kb(250MPa)时的应变。结果表明,该有效应力定理不适用于非弹性过程(如断裂)。

发文机构:不详 胜利油田分公司物探研究院

关键词:流体形变孔隙度有效应力

分类号: O174[理学—数学][理学—基础数学]

注:学术社仅提供期刊论文索引,查看正文请前往相应的收录平台查阅
相关文章