作者:周雪晴,张占松,朱林奇,张超谟
摘要:碳酸盐岩储层的储集空间类型多样、储层性质复杂,导致流体的测井响应受到强非均质性的影响,给流体识别工作带来极大困难。针对该问题,提出基于测井序列信息的双向长短期记忆网络(Bi-LSTM)流体识别模型,从测井响应特征差异性分析及相似性分析两方面出发,确定敏感曲线,结合Bi-LSTM网络的输入要求,建立流体识别样本库,并获得基于Bi-LSTM的流体识别模型。应用该方法对鄂尔多斯盆地马家沟组进行流体识别,与单向LSTM模型及其他3类机器学习算法预测结果进行对比。结果表明基于Bi-LSTM的流体识别模型流体识别的符合率从82.7%提高到91.5%,取得较好的应用效果;该模型既能充分利用井下对应深度测井曲线的响应值,又能兼顾测井曲线随深度的变化趋势和前后关联,最大程度避免储层纵向非均质性带来的影响,提高流体识别能力。
发文机构:长江大学油气资源与勘探技术教育部重点实验室
关键词:流体识别双向长短期记忆网络碳酸盐岩测井序列fluid identificationbidirectional long short-term memory networkcarbonate rocklogging response sequences
分类号: