作者:刘帅,邢光龙
摘要:受成像光谱仪性能与复杂地物分布的影响,高光谱图像存在大量的混合像元。传统的基于学习的混合像元分解方法通常都是浅层模型,或缺少对空间、光谱信息的综合应用。本文提出一种多维卷积网络协同的混合像元分解深层模型,采用多种维度卷积网络能更充分利用多种维度语义信息,有利于估计小样本和高维的高光谱图像混合像元丰度。对训练数据进行增广处理,构建光谱维、空间维和立方体3种卷积神经网络;设计了融合层,协同3种卷积神经网络提取特征,“端到端”的估计混合像元丰度值;模型使用了批量归一化、池化和Dropout方法避免过拟合现象。试验结果表明,多维卷积网络协同方法的引入能更有效地提取空-谱特征信息,与其他的卷积网络解混模型相比,估计的混合像元丰度精度有显著提高。
发文机构:燕山大学信息科学与工程学院 河北省信息传输与信号处理重点实验室
关键词:高光谱解混卷积神经网络深度学习丰度估计hyperspectral unmixingconvolutional neural networkdeep learningabundance estimation
分类号: P237[天文地球—摄影测量与遥感]