作者:连喜红,祁元,王宏伟,张金龙,杨瑞
摘要:居民地的空间格局和密度直接反映着区域人类活动的强弱程度,影响着区域人地系统演变和生态环境可持续发展。基于高分辨率卫星遥感影像数据,提出了一种面向对象的青海湖环湖区居民地信息自动化提取方法。首先,利用尺度集理论对高分辨率卫星遥感影像进行多尺度分割,获取不同尺度的分割对象;其次,通过机器学习算法集对分割对象的自定义特征、光谱特征、几何特征和纹理特征进行训练,选取最优自动分类算法;最后,利用最优自动分类算法提取青海湖环湖区城镇居民地和农村居民地信息。采用平均召回率、平均准确率和平均F值评价指标对分类结果进行精度评价,其中,城镇居民地各评价指标均在93%以上,农村居民地各评价指标均在86%以上。结果表明:该方法提取城镇居民地和农村居民地总体精度较高,在大面积人类活动精细化监测中具有较好的科学意义和应用价值。
发文机构:中国科学院西北生态环境资源研究院 中国科学院大学
关键词:高分辨率遥感影像面向对象居民地尺度集模型机器学习算法集High resolution remote sensing imageObject-orientedResidential informationThe scale setsMachine learning algorithm set
分类号: TP75[自动化与计算机技术—检测技术与自动化装置]