作者:邱俊博,胡军
摘要:为了进行尾矿坝浸润线预测,提出一种极限学习机(ELM)方法。ELM网络能够很好地描述浸润线与其影响因素的非线性关系,将最小干滩长度、库水位、渗流量、竖直位移、水平位移5个主要因素作为ELM网络的输入,浸润线埋深作为网络的输出。为了提高ELM的预测准确性,利用均方误差指标选取归一化方法、激活函数、隐含层节点个数,最终确定最大值归一化方法预处理数据,输入5-9-1ELM网络,选取激活函数为sin型函数进行浸润线预测。同时选取BP神经网络,采用相同的归一化方法和网络形式进行对比。结果表明ELM模型在浸润线短期预测中可行性更高,预测精度佳。
发文机构:辽宁科技大学土木工程学院
关键词:浸润线预测极限学习机尾矿坝归一化均方误差phreatic line predictionextreme learning machinetailings damnormalizationmean square error
分类号: TD926.4[矿业工程—选矿]