遥感信息 · 2020年第4期62-67,共6页

结合同异性度量的超像素分割方法

作者:祁瑞光,张和生

摘要:针对以往分割方法在分割影像时出现的分割效果较差以及精度较低等问题,提出一种结合超像素同异性度量的高分辨率遥感影像分割方法,对分割效果进行改善。首先利用高斯滤波对影像进行平滑处理;再通过简单线性迭代聚类算法对影像进行像素级分割,生成超像素;之后根据灰度离散程度将离散超像素归并到邻近权重最大的超像素,解决独立像素点问题;然后计算超像素同异性度量值,根据阈值将超像素合并,达到分割影像的目的。此方法在传统分割算法基础上增强了超像素对梯度和颜色的敏感性,提高了影像分割的精度。实验表明,该方法可有效减小噪声点的影响,改善以往算法存在的过分割以及分割线偏移等缺陷。

发文机构:太原理工大学矿业工程学院

关键词:简单线性迭代聚类图像分割超像素区域合并同异性度量simple linear iterative clusteringimage segmentationsuperpixelregion mergingvalue of sameness

分类号: P237[天文地球—摄影测量与遥感]

来源期刊
遥感信息

遥感信息

Remote Sensing Information
  • CSCD
  • 北大核心
注:学术社仅提供期刊论文索引,查看正文请前往相应的收录平台查阅
相关文章